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ABSTRACT: A new equation is proposed for relating solvent self-diffusion coefficients
and mutual diffusion coefficients for polymer–solvent systems. The formulation of the
new equation avoids a friction-coefficient formalism, and hence the new equation does
not require the thermodynamic properties of the polymer–solvent system. A compari-
son has been made of the predictions of the proposed equation with experimental data
for the benzene–rubber system. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77:
3195–3199, 2000
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INTRODUCTION

An analysis of a mass transfer process involving
a polymer–solvent system can be carried out
only if the binary mutual diffusion coefficient,
D, is known. Since the mutual diffusion coeffi-
cient for a polymer–solvent system is often a
strong function of concentration and of temper-
ature, the availability of a predictive method for
D would of course be very helpful since a
lengthy experimental program could be
avoided. The free-volume theory of transport1

provides a reasonable basis for predicting the
solvent self-diffusion coefficient, D1, for both
linear and branched polymers over the complete
concentration range and over a wide tempera-
ture range. This theory is valid for both rubbery
and glassy polymer–solvent systems and also
for monodisperse and polydisperse polymers.
The predictive theory for D1 could serve as the
basis for determining D if an equation relating
solvent self-diffusion and mutual diffusion coef-
ficients were available.

An equation that relates solvent self-diffusion
and mutual diffusion coefficients for polymer–sol-
vent systems has been developed2 by using the
generally much greater self-diffusion coefficients
of solvents compared to polymers. Since this orig-
inal expression is valid only over a limited con-
centration range, an improved version of this
equation has recently been proposed.3 Both these
previous equations are based on a friction-coeffi-
cient formalism for the diffusion process, and
hence both can be used to relate D to D1 only if
thermodynamic data are available for the poly-
mer–solvent system of interest. The objective of
this study is to develop an equation for relating D
to D1 that avoids the friction-coefficient approach
and hence does not introduce the thermodynamic
properties of the polymer–solvent system into the
derived equation. The goal is therefore to derive
an equation that can be used to determine D only
from the concentration and temperature depen-
dence of D1 and from the polymer self-diffusion
coefficient at the infinitely dilute polymer limit
(effectively pure solvent).

The pertinent theory is developed in the second
section of this paper, and a comparison of the
predictions of this theory with actual experimen-
tal data for D is presented in the third section.
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THEORY

We consider isothermal diffusion in a binary sys-
tem considered to be a mixture of three compo-
nents: 1, 2, and 3. Components 1 and 2 are chem-
ically identical versions of the solvent that are
distinguishable through labeling, and component
3 is the polymer. The analysis of the diffusion
process is carried out using j1

† and j2
†, the x com-

ponents of the mass diffusion fluxes relative to
the volume average velocity for components 1 and
2, respectively. The following constitutive equa-
tions relate these mass diffusion fluxes to concen-
tration and pressure gradients:

j1
† 5 2D11

r1

x 2 D12

r2

x 1 k1

p
x (1)

j2
† 5 2D21

r1

x 2 D22

r2

x 1 k2

p
x (2)

Here, rI is the mass density of component I, p is
pressure, k1 and k2 are constitutive coefficients
for the pressure gradient, and the DIJ are the four
diffusion coefficients needed to describe the ter-
nary diffusion process. In addition, the mass dif-
fusion fluxes relative to the volume average ve-
locity for a ternary system are related by the
following equation

j1
†V̂1 1 j2

†V̂2 1 j3
†V̂3 5 0 (3)

where V̂I is the partial specific volume of compo-
nent I. Eqs. (1)–(3) can now be used to analyze
both the self-diffusion process and the mutual
process for the ternary version of our binary sys-
tem.

A self-diffusion process that involves both la-
beled and unlabeled solvent (components 1 and 2)
and polymer (component 3) can be described by
the following characteristics: (1) There are no
pressure gradients; (2) There are no velocities or
concentration gradients for component 3, the
polymer; and (3) The total solvent concentration
is the same everywhere in the diffusion field for
all times:

r1 1 r2 5 constant (4)

For the self-diffusion process, it is evident that

r1

x 5 2
r2

x (5)

V̂1 5 V̂2 (6)

j3
† 5 0 (7)

and consequently utilization of eq. (3) produces
the following result:

j1
† 5 2j2

† (8)

Also, the combination of eqs. (1), (2), and (5) yields
the following equations:

j1
† 5 2~D11 2 D12!

r1

x (9)

j2
† 5 2~D21 2 D22!

r1

x (10)

The self-diffusion coefficient, D1, can be defined
by the following expression

j1
† 5 2D1

r1

x (11)

and it is evident from eqs. (8)–(11) that the fol-
lowing equations relate D1 to the four DIJ:

D1 5 D11 2 D12 5 D22 2 D21 (12)

It is reasonable to expect that

D11 5 D22 (13)

D12 5 D21 (14)

since components 1 and 2 are chemically identi-
cal. Equations (13) and (14) are consistent with
eq. (12).

In a mutual diffusion process for labeled and
unlabeled solvent components and polymer, there
is no distinction made for any differences in the
labeled and unlabeled solvent species. Hence, the
mutual diffusion process is described by the fol-
lowing characteristic: The ratio of concentrations
of the isotopic forms is constant everywhere in the
diffusion field for all times:
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r1

r2
5 constant (15)

It follows from eq. (15) that the concentration
derivatives in the diffusion field can be expressed
as follows:

r1

x 5
r1

r1 1 r2

~r1 1 r2!

x (16)

r2

x 5
r2

r1 1 r2

~r1 1 r2!

x (17)

In addition, the total solvent diffusion flux can be
obtained by simply adding eqs. (1) and (2):

j1
† 1 j2

† 5 2~D11 1 D21!
r1

x

2 ~D12 1 D22!
r2

x 1 ~k1 1 k2!
p
x (18)

Combination of eqs. (16)–(18) produces the follow-
ing expression for the total solvent flux:

j1
† 1 j2

† 5 2F ~D11 1 D21!r1

r1 1 r2
1

~D22 1 D12!r2

r1 1 r2
G

3
~r1 1 r2!

x 1 ~k1 1 k2!
p
x (19)

Rearrangement of eq. (12) gives the expression

D11 1 D21 5 D22 1 D12 (20)

and substitution of eq. (20) into eq. (19) produces
the following result for the total solvent flux:

j1
† 1 j2

† 5 2~D11 1 D21!
~r1 1 r2!

x 1 ~k1 1 k2!
p
x
(21)

In addition, the following constitutive equation
can be used to define the binary mutual diffusion
coefficient, D:

j1
† 1 j2

† 5 2D
~r1 1 r2!

x 1 ~k1 1 k2!
p
x (22)

Consequently, the following expressions relate D
to the four DIJ:

D 5 D11 1 D21 5 D22 1 D12 (23)

Equations (13) and (14) are consistent with this
result.

A relationship between D and D1 can thus be
formulated by combining eqs. (12), (14), and (23):

D
D1

5

1 1
D12

D11

1 2
D12

D11

(24)

This equation can be used to determine the con-
centration dependence of D at a given tempera-
ture from the concentration dependence of D1, if
an expression can be developed for the concentra-
tion dependence of D12/D11. In the limit of zero
solvent volume fraction (f1 5 0), there should be
negligible interaction between components 1 and
2 so that

D12

D11
~f1 5 0! 5 0 (25)

It is evident from eq. (24) that this equation pro-
duces the expected result at the pure polymer
limit:

D~f1 5 0! 5 D1~f1 5 0! (26)

If the above analysis is repeated for a ternary
system consisting of solvent (component 1) and
labeled and unlabeled polymer (components 3 and
4), an equation analogous to eq. (24) can be de-
rived:

D
D3

5

1 1
D34

D33

1 2
D34

D33

(27)

At the pure solvent limit (f1 5 1, f3 5 0), it is
again reasonable to expect that

D34

D33
~f1 5 1! 5 0 (28)

so that we obtain the expected result at this limit:

D~f1 5 1! 5 D3~f1 5 1! (29)
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Evaluation of eq. (24) at f1 5 1 and substitution
of eq. (29) produces an expression for the value of
D12/D11 (f1 5 1):

D12

D11
~f1 5 1! 5

W 2 1
W 1 1 (30)

W 5
D3

D1
~f1 5 1! (31)

Consequently, eqs. (25) and (30) provide values
for the unknown function D12/D11 at the two ex-
tremes of the volume fraction interval.

At this point in the development, the results
should be applicable to a mixture of any two fluids
because eqs. (13), (14), (25), and (28) constitute
very reasonable assumptions. To proceed further,
however, more has to be said about the depen-
dence of D12/D11 on the solvent volume fraction,
f1. For a general binary mixture, there appears to
be no simple way to determine a reasonable de-
pendence of D12/D11 on f1. However, for a poly-
mer–solvent mixture, it is generally true that

D1 @ D3 (32)

so that for systems with polymers of sufficiently
high molecular weight, the following relationship
is valid:

dS D
D1

D
df1

, 0 (33)

Experimental data for polymer–solvent systems
are generally described by eq. (33). Consequently,
a linear dependence of D12/D11 on f1 is proposed:

D12

D11
5 K1f1 1 K2 (34)

The two constants in eq. (34) can be determined
using eqs. (25) and (30), and, in addition, eq. (34)
is consistent with eq. (33). Evaluation of K1 and
K2 and substitution of eq. (34) into eq. (24) pro-
duces the following relationship between D and
D1:

D
D1

5
1 1 W 1 f1~W 2 1!

1 1 W 2 f1~W 2 1!
(35)

The concentration dependence of D at a particu-
lar temperature can be determined from the con-
centration dependence of D1 and from an esti-
mated value of W. An estimate of W can be ob-
tained by using well-known results4,5 for
diffusional behavior in infinitely dilute polymer
solutions to estimate D3(f1 5 1). The predictive
capabilities of eq. (35) are evaluated in the next
section.

RESULTS AND DISCUSSION

Unfortunately, there are not many investigations
involving the measurement of both D and D1 for
polymer–solvent systems over the complete con-
centration range. One such study has been car-
ried out for a benzene–rubber mixtures6 at 25°C.
The only missing piece of information is the value
of D (and, hence, D3) at f1 5 1. It seems reason-
able to estimate D at f1 5 1 by extrapolating the
mutual diffusion data at f1 5 0.9, 0.925, and 0.95
to f1 5 1. This procedure gives a value of D 5 5.5
3 1027 cm2/s, and hence the following value of W
can be calculated for this system:

W 5 0.0245 (36)

This value of W and the measured concentration
dependence of D1 can then be used to predict the
concentration dependence of D for the benzene–
rubber system at 25°C.

Comparisons of the predictions of eq. (35) for
the mutual diffusion coefficient D with experi-
mental data for D are presented in Table I. The
new equation provides reasonably good predic-
tions over the complete concentration range for
this particular system. The maximum error in the
predictions of eq. (35) is about 15%, and the av-
erage absolute error (excluding the points at f1
5 0 and f1 5 1) is less than 9%. A previous
equation relating D to D1, based on a friction-
coefficient formalism,3 produced predictions for
the same data set that had a maximum error of
about 30% and an average absolute error of about
20%.

It is fair to conclude that the new proposed
equation for relating D to D1 for polymer–solvent
systems, eq. (35), is a promising possibility for
providing good predictions for D. The proposed
equation makes it possible to predict the concen-
tration dependence of D directly from the concen-
tration dependence of D1 using only one addi-
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tional parameter—the polymer self-diffusion co-
efficient at f1 5 1. The new equation provides
better predictions for D for the benzene–rubber
system than a previously proposed equation, and

no thermodynamic data are needed. Further-
more, the present method of relating D and D1
appears to be preferable to a friction-coefficient
formalism. More comprehensive D and D1 data
sets are of course needed to assess more com-
pletely the capabilities of the new equation.

This work was supported by funds provided by the Dow
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Table I Comparison of Predicted and
Experimental Values of D

f1

D 3 107

(Predicted) (cm2/s)
D 3 107

(Experiment) (cm2/s)

0 1.367 1.367
0.1 4.63 4.10
0.2 9.86 9.60
0.3 15.9 15.15
0.4 21.4 21.6
0.5 25.3 26.6
0.6 26.8 28.5
0.7 25.5 28.8
0.8 21.5 25.4
0.9 14.8 16.9
0.925 12.7 14.3
0.95 10.4 11.7
1.0 5.5 5.5
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